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Obama for Communication-
Avoiding Algorithms 

“New Algorithm Improves Performance and Accuracy on Extreme-Scale 
Computing Systems. On modern computer architectures, 
communication between processors takes longer than the 
performance of a floating point arithmetic operation by a given 
processor. ASCR researchers have developed a new method, derived 
from commonly used linear algebra methods, to minimize 
communications between processors and the memory hierarchy, by 
reformulating the communication patterns specified within the 
algorithm. This method has been implemented in the TRILINOS 
framework, a highly-regarded suite of software, which provides 
functionality for researchers around the world to solve large scale, complex 
multi-physics problems.” 
 

FY 2012 Congressional Budget Request, Volume 4, FY2010 Accomplishments, Advanced Scientific 
Computing Research (ASCR), pages 65-67. 



Energy Cost Challenge for 
Computing Facilities 

At ~$1M per MW, energy costs are substantial 
•  1 petaflop in 2010 uses 3 MW 
•  1 exaflop in 2018 possible in 200 MW with “usual” scaling 
•  1 exaflop in 2018 at 20 MW is DOE target 

goal 

usual 
scaling 

2005                                      2010                                     2015                                      2020 
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Measuring Efficiency 
•  Race-to-Halt generally 

minimized energy use 
•  For Scientific Computing 

centers, the metric should be 
science output per Watt…. 

–  NERSC in 2010 ran at 450 
publications per MW-year 

–  But that number drops with 
each new machine 

•  Next best: application 
performance per Watt 

–  Newest, largest machine is best 
–  Lower energy and cost per core 
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New Processor Designs are 
Needed to Save Energy 

•  Server processors have been designed for 
performance, not energy 
– Graphics processors are 10-100x more efficient 
– Embedded processors are 100-1000x 
– Need manycore chips with thousands of cores 
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Cell phone processor 
(0.1 Watt, 4 Gflop/s) 

Server processor  
(100 Watts, 50 Gflop/s) 
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The Amdahl Case for 
Heterogeneity 
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Chip with area for 256 thin cores  

A Chip with up to 256 “thin” cores and “fat” core that 
uses some of the some of the thin core area 

256 small cores 1 fat core 

Assumes 
speedup for 
Fat / Thin = 
Sqrt of Area 
advantage 
 

Heterogeneity Analysis by: Mark Hill, U. Wisc 



New Processors Means New 
Software 

•  Exascale will have chips with thousands of tiny 
processor cores, and a few large ones 

•  Architecture is an open question:  
–  sea of embedded cores with heavyweight “service” nodes 
–  Lightweight cores are accelerators to CPUs 
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Interconnect 
Memory 
Processors 

Server Processors                   Manycore 

130 MW 
75 MW 



Memory Capacity is Not 
Keeping Pace 

Technology trends against a constant or increasing memory per core 
•  Memory density is doubling every three years; processor logic is every two 
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs 

Source: David Turek, IBM 

Cost of Computation vs. Memory 
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Question: Can you double concurrency without doubling memory? 

Source: IBM 
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Why avoid communication? 
•  Running time of an algorithm is sum of 3 terms: 

–  # flops * time_per_flop 
–  # words moved / bandwidth 
–  # messages * latency 

•  Time_per_flop  <<  1/ bandwidth  <<  latency 
•  Gaps growing exponentially with time [FOSC] 

•  And these are hard to change: 
•  “Latency is physics, bandwidth is money” 

communica1on	
  

Annual improvements 
Time_per_flop Bandwidth Latency 

Network 26% 15% 
DRAM 23% 5% 

59% 



Bandwidth (to Memory and Remote 
Nodes) is an Energy Hog 
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Value of Local Store Memory 

•  Unit stride as important as cache 
hits on hardware with prefetch 
–  Don’t cut unit stride when tiling 

•  Software controlled memory gives 
more control (“scrathpad”) 
–  May also be more for new level of 

memory between DRAM and disk 

Cell STRIAD (64KB concurrency)
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New Processors Means New 
Software 

•  Exascale will have chips with thousands of tiny processor 
cores, and a few large ones 

•  Architecture is an open question:  
–  sea of embedded cores with heavyweight “service” nodes 
–  Lightweight cores are accelerators to CPUs 

•  Low power memory and storage technology are key 
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Interconnect 
Memory 
Processors 

Server Processors                   Manycore                   Low power memory 
                                                                                      and interconnect 

130 MW 
75 MW 

25 Megawatts 



Why Avoid Synchronization? 

•  Processors do not run at the same speed 
–  Never did, due to caches 
–  Power / temperature management makes this worse 

60
%

 

HPC can’t turn 
this off  
–  Power swings of 

50% on systems 
–  At $3M/MW of 

capital costs, don’t 
want 50% 
headroom  



Errors Can Turn into 
Performance Problems 

•  Fault resilience introduces inhomogeneity in 
execution rates (error correction is not instantaneous) 

Slide source: John Shalf	





Challenges to Exascale 

1)  System power is the primary constraint 
2)  Concurrency (1000x today) 
3)  Memory bandwidth and capacity are not keeping pace 
4)  Processor architecture is open, but likely heterogeneous 
5)  Programming model heroic compilers will not hide this 
6)  Algorithms need to minimize data movement, not flops 
7)  I/O bandwidth unlikely to keep pace with machine speed  
8)  Resiliency critical at large scale (in time or processors) 
9)  Bisection bandwidth limited by cost and energy 
 Unlike the last 20 years most of these (1-7) are equally 
important across scales, e.g., 1000 1-PF machines 

Performance Growth 



Algorithms to Optimize for 
Communication 
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Avoiding Communication in 
Iterative Solvers 

•  Consider Sparse Iterative Methods for Ax=b 
–   Krylov Subspace Methods: GMRES, CG,… 
–  Can we lower the communication costs? 

•  Latency of communication, i.e., reduce # messages by 
computing multiple reductions at once 

•  Bandwidth to memory hierarchy, i.e., compute Ax, A2x, … 
Akx with one read of A 

•  Solve time dominated by: 
– Sparse matrix-vector multiple (SPMV) 

•  Which even on one processor is dominated by 
“communication” time to read the matrix  

– Global collectives (reductions) 
•  Global latency-limited  Joint work with Jim 

Demmel, Mark Hoemman, 
Marghoob Mohiyuddin 
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Autotuning Gets Kernel 
Performance Near Optimal 

• Roofline model captures bandwidth and computation limits 
• Autotuning gets kernels near the roof 

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,…  
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Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  

 
•  Idea: pick up part of A and x that fit in fast memory, 

compute each of k products 
•  Example: A tridiagonal, n=32, k=3 
•  Works for any “well-partitioned” A 
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Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Sequential Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Saves bandwidth (one read of A&x for k steps) 
•  Saves latency (number of independent read events) 

Step 1 Step  2 Step  3 Step  4 
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Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Each processor communicates once with neighbors  

Proc 1 Proc  2 Proc  3 Proc  4 
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Communication Avoiding Kernels: 
The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Each processor works on (overlapping) trapezoid 
•  Saves latency (# of messages); Not bandwidth 
         But adds redundant computation 

Proc 1 Proc  2 Proc  3 Proc  4 



Matrix Powers Kernel on a 
General Matrix 

•  Saves communication for “well partitioned” matrices 
•  Serial: O(1) moves of data  moves vs. O(k) 
•  Parallel: O(log p) messages vs.  O(k log p)  

23 

Joint work with Jim Demmel, Mark 
Hoemman, Marghoob Mohiyuddin 

For implicit memory 
management (caches) 
uses a TSP algorithm 
for layout 
 



Bigger Kernel (Akx) Runs at Faster 
Speed than Simpler (Ax)    

Speedups on Intel Clovertown (8 core) 

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick  



Minimizing Communication of GMRES to solve Ax=b 

•  GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2 
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Communica1on-­‐avoiding	
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Sequential case: #words moved decreases by a factor of k 
Parallel case: #messages decreases by a factor of k 

• Oops	
  –	
  W	
  from	
  power	
  method,	
  precision	
  lost!	
  



TSQR: An Architecture-Dependent 
Algorithm 
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Work by Laura Grigori, 
Jim Demmel, Mark 
Hoemmen, Julien Langou	





TSQR Performance Results 
•  Parallel 

–  Intel Clovertown 
– Up to 8x speedup (8 core, dual socket, 10M x 10) 

–  Pentium III cluster, Dolphin Interconnect, MPICH 
•  Up to 6.7x speedup (16 procs, 100K x 200) 

–  BlueGene/L 
•  Up to 4x speedup (32 procs, 1M x 50) 

–  Grid – 4x on 4 cities (Dongarra et al) 
–  Cloud – early result – up and running using Mesos 

•  Sequential   
–  Out-of-Core on PowerPC laptop 

•  As little as 2x slowdown vs (predicted) infinite DRAM 
•  LAPACK with virtual memory never finished 
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Data from Grey Ballard, Mark Hoemmen, Laura Grigori, Julien Langou, Jack 
Dongarra, Michael Anderson  



Matrix Powers Kernel (and TSQR) 
in GMRES 
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Communication-Avoiding  
Krylov Method (GMRES) 

Performance on 8 core Clovertown 



CA-Krylov Methods Summary and 
Future Work 

•  The Communication-Avoidance works 
– Provably optimal  
– Faster in practice 

•  Ongoing work for “hard” matrices  
– Partition poorly (high surface to volume) 
–  Idea: separate out dense rows (HSS 

matrices) 
–  [Erin Carson, Nick Knight, Jim Demmel] 
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Beyond Domain Decomposition: 
2.5D Matrix Multiply 
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ScaLAPACK PDGEMM Perfect 
Strong Scaling 

•   Conventional “2D algorithms” use P1/2  x   P1/2 mesh  and  minimal memory 
•   New “2.5D algorithms” use (P/c)1/2  x (P/c)1/2  x c1/2  mesh  and c-fold memory 

•   Matmul sends c1/2 times fewer words – lower bound 
•   Matmul sends c3/2 times fewer messages – lower bound 

Word by Edgar 
Solomonik and Jim 
Demmel 	


Lesson: Never 
waste fast 
memory 



Communication Avoidance in Multigrid: Method of 
Local Corrections (MLC) for Poisson’s Equation"

MLC uses domain decomposition, plus a noniterative form of 
multigrid, to represent the solution in a way that minimizes global 
communication and increases computational intensity."
•  Local domains fit in cache; ssolves computed using FFT and a 

simplified version of FMM. For 163 - 323, this yields ~5 flops/byte."
•   The (global) coarse problem is small. Communication comparable 

to single relaxation step."
•  Weak scaling: 95% efficiency up to 1024 processors."
"
"

,	



Real analytic, with 
rapidly convergent 
Taylor expansion 

Work by Phil Colella et al 



Avoiding Synchronization 

33 33 
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Avoid Synchronization from 
Applications 

Cholesky 
4 x 4 

QR 
4 x 4 

Computations as DAGs 
View parallel executions as the directed acyclic graph of the 
computation  

Slide source: Jack Dongarra	





Avoiding Synchronization in 
Communication 

•  Two-sided message passing (e.g., MPI) requires 
matching a send with a receive to identify memory 
address to put data 
–  Wildly popular in HPC, but cumbersome in some applications 
–  Couples data transfer with synchronization 

•  Using global address space decouples synchronization 
–  Pay for what you need!   
–  Note: Global Addressing ≠ Cache Coherent Shared memory 

address 

message id 

data payload 

data payload 
one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 

Joint work with Dan Bonachea, Paul Hargrove, 
Rajesh Nishtala and rest of UPC group	





Event Driven LU in UPC 

•  Assignment of work is static; schedule is dynamic 
•  Ordering needs to be imposed on the schedule 

–  Critical path operation: Panel Factorization 
•  General issue: dynamic scheduling in partitioned memory 

–  Can deadlock in memory allocation 
–  “memory constrained” lookahead 
 

some edges omitted 
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        DAG Scheduling Outperforms Bulk-
Synchronous Style 

UPC vs. 
ScaLAPACK
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UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding 
–  New problem in partitioned memory: allocator deadlock 
–  Can run on of memory locally due tounlucky execution order 

PLASMA on shared memory UPC on partitioned memory 

PLASMA by Dongarra et al; UPC LU joint with 
Parray Husbands	





Irregular vs. Regular Parallelism 

•  Computations with known task graphs can be 
mapped to resources in an offline manner (before 
computation starts) 
–  Regular graph: By a compiler (static) or runtime (semi-static) 
–  Irregular graphs: By a DAG scheduler 

–  No need for online scheduling 
•  If graphs are not known ahead of time (structure, 

task costs, communication costs), then dynamic 
scheduling is needed 
–  Task stealing / task sharing 
–  Demonstrated on shared memory 

•  Conclusion: If your task graph is dynamic, the 
runtime needs to be, but what if it static?   



Load Balancing with Locality 
•  Locality is important: 

–  When memory hierarchies are deep 
–  When computational intensity is low 

•  Most (all?) successful examples of locality-important 
applications/machines use static scheduling 
–  Unless they have a irregular/dynamic task graph  

•  Two extremes are well-studied 
–  Dynamic parallelism without locality 
–  Static parallelism (with threads = processors) with locality 

•  Dynamic scheduling and locality control don’t mix 
–  Locality control can cause non-optimal task schedule, which can 

blow up memory use (breadth vs. depth first traversal) 
–  Can run out of memory locally when you don’t globally 
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Use Two Programming Models to 
Match Machine 

Hybrid Programming is key to saving memory 
(2011) and sometimes improves performance 
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Getting the Best of Each 

PGAS for locality and convenience  
Global address space: directly read/write remote data  
Partitioned: data is designated as local or global 

G
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x: 7 
y: 0 

p0" p1" pn"

•  Affinity control  
•  Scalability 
•  Never say “receive” 

Debate is around the control model: 
•  Dynamic thread creation vs. SPMD 
•  Hierarchical SPMD compromise 

•  “Think parallel” and group as needed 



Hierarchical SPMD in Titanium 
•  Thread teams may execute distinct tasks 

partition(T) { 
  { model_fluid(); } 
  { model_muscles(); } 
  { model_electrical(); } 
} 

•  Hierarchy for machine / tasks 
–  Nearby: access shared data 
–  Far away: copy data 

•  Advantages:  
–  Provable pointer  
–  Mixed data / task style  
–  Lexical scope prevents some deadlocks 
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Hierarchical Programming Model: 
Phalanx 

 

•  Invoke functions on set of cores and set of memories 
•  Hierarchy of memories 

–  Can query to get (some) aspects of the hierarchical structures 
•  Functionally homogeneous cores (on Echelon) 

–  Can query to get (performance) properties of cores 
•  Hierarchy of thread blocks 

–  May be aligned with hardware based on queries 
 

Memory 

Memory 

Memory 

Proc Mem Proc Mem 
• • • 

Proc Mem Proc Mem 
• • • 

Echelon ProgSys Team: Michael Garland, Alex Aiken, Brad 
Chamberlain, Mary Hall, Greg Titus, Kathy Yelick 



Stepping Back 
•  Communication avoidance as old at tiling 
•  Communication optimality as old as Hong/Kung 
•  What’s new? 

–  Raising the level of abstraction at which we optimize 
–  BLAS2 à BLAS3 à LU or SPMV/DOT à Krylov 
–  Changing numerics in non-trivial ways 
–  Rethinking methods to models 

•  Communication and synchronization avoidance 
•  Software engineering: breaking abstraction 
•  Compilers: inter-procedural optimizations 
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Exascale Views 
•  “Exascale” is about continuing growth in 

computing performance for science 
–  Energy efficiency is key 
–  Job size is irrelevant 

•  Success means: 
–  Influencing market:  HPC, technical computing, 

clouds, general purpose 
–  Getting more science from data and computing 

•  Failure means: 
–   few big machines for a few big applications 

•  Not all computing problems are exascale, but 
they should all be exascale-technology aware 
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Thank You! 
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