
Algorithmic Challenges of
Exascale Computing

Kathy Yelick

Associate Laboratory Director for Computing Sciences
and Acting NERSC Center Director

Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

Obama for Communication-
Avoiding Algorithms

“New Algorithm Improves Performance and Accuracy on Extreme-Scale
Computing Systems. On modern computer architectures,
communication between processors takes longer than the
performance of a floating point arithmetic operation by a given
processor. ASCR researchers have developed a new method, derived
from commonly used linear algebra methods, to minimize
communications between processors and the memory hierarchy, by
reformulating the communication patterns specified within the
algorithm. This method has been implemented in the TRILINOS
framework, a highly-regarded suite of software, which provides
functionality for researchers around the world to solve large scale, complex
multi-physics problems.”

FY 2012 Congressional Budget Request, Volume 4, FY2010 Accomplishments, Advanced Scientific
Computing Research (ASCR), pages 65-67.

Energy Cost Challenge for
Computing Facilities

At ~$1M per MW, energy costs are substantial
•  1 petaflop in 2010 uses 3 MW
•  1 exaflop in 2018 possible in 200 MW with “usual” scaling
•  1 exaflop in 2018 at 20 MW is DOE target

goal

usual
scaling

2005 2010 2015 2020

3

Measuring Efficiency
•  Race-to-Halt generally

minimized energy use
•  For Scientific Computing

centers, the metric should be
science output per Watt….

–  NERSC in 2010 ran at 450
publications per MW-year

–  But that number drops with
each new machine

•  Next best: application
performance per Watt

–  Newest, largest machine is best
–  Lower energy and cost per core

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

$
 p

e
r

co
re

-h
o

u
r

Center
SysAdmin
Power & cooling

Old-HPC Cluster New-HPC

New Processor Designs are
Needed to Save Energy

•  Server processors have been designed for
performance, not energy
– Graphics processors are 10-100x more efficient
– Embedded processors are 100-1000x
– Need manycore chips with thousands of cores

5

Cell phone processor
(0.1 Watt, 4 Gflop/s)

Server processor
(100 Watts, 50 Gflop/s)

6 1/11/12

The Amdahl Case for
Heterogeneity

0	

50	

100	

150	

200	

250	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	

A
sy
m
m
et
ri
c	

Sp
ee
du

p	

Size	
 of	
 Fat	
 core	
 in	
 Thin	
 Core	
 units	

F=0.999	

F=0.99	

F=0.975	

F=0.9	

F=0.5	

(256 cores)
(193 cores)

(1 core)

F is fraction of time in parallel; 1-F is serial

Chip with area for 256 thin cores

A Chip with up to 256 “thin” cores and “fat” core that
uses some of the some of the thin core area

256 small cores 1 fat core

Assumes
speedup for
Fat / Thin =
Sqrt of Area
advantage

Heterogeneity Analysis by: Mark Hill, U. Wisc

New Processors Means New
Software

•  Exascale will have chips with thousands of tiny
processor cores, and a few large ones

•  Architecture is an open question:
–  sea of embedded cores with heavyweight “service” nodes
–  Lightweight cores are accelerators to CPUs

7

Interconnect
Memory
Processors

Server Processors Manycore

130 MW
75 MW

Memory Capacity is Not
Keeping Pace

Technology trends against a constant or increasing memory per core
•  Memory density is doubling every three years; processor logic is every two
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

8

Question: Can you double concurrency without doubling memory?

Source: IBM

8

Why avoid communication?
•  Running time of an algorithm is sum of 3 terms:

–  # flops * time_per_flop
–  # words moved / bandwidth
–  # messages * latency

•  Time_per_flop << 1/ bandwidth << latency
•  Gaps growing exponentially with time [FOSC]

•  And these are hard to change:
•  “Latency is physics, bandwidth is money”

communica1on	

Annual improvements
Time_per_flop Bandwidth Latency

Network 26% 15%
DRAM 23% 5%

59%

Bandwidth (to Memory and Remote
Nodes) is an Energy Hog

1

10

100

1000

10000

Pi
co

Jo
ul

es

now

2018

Intranode/MPI
Communication

On-chip / CMP
communication

Intranode/SMP
Communication

Value of Local Store Memory

•  Unit stride as important as cache
hits on hardware with prefetch
–  Don’t cut unit stride when tiling

•  Software controlled memory gives
more control (“scrathpad”)
–  May also be more for new level of

memory between DRAM and disk

Cell STRIAD (64KB concurrency)

0.000

5.000

10.000

15.000

20.000

25.000

30.000

16 32 64 128 256 512 1024 2048

stanza size

G
B

/s

1 SPE 2 SPEs 3 SPEs 4 SPEs
5 SPEs 6 SPEs 7 SPEs 8 SPEs

Joint work with Shoaib Kamil, Lenny Oliker, John
Shalf, Kaushik Datta	

New Processors Means New
Software

•  Exascale will have chips with thousands of tiny processor
cores, and a few large ones

•  Architecture is an open question:
–  sea of embedded cores with heavyweight “service” nodes
–  Lightweight cores are accelerators to CPUs

•  Low power memory and storage technology are key

12

Interconnect
Memory
Processors

Server Processors Manycore Low power memory
 and interconnect

130 MW
75 MW

25 Megawatts

Why Avoid Synchronization?

•  Processors do not run at the same speed
–  Never did, due to caches
–  Power / temperature management makes this worse

60
%

HPC can’t turn
this off
–  Power swings of

50% on systems
–  At $3M/MW of

capital costs, don’t
want 50%
headroom

Errors Can Turn into
Performance Problems

•  Fault resilience introduces inhomogeneity in
execution rates (error correction is not instantaneous)

Slide source: John Shalf	

Challenges to Exascale

1)  System power is the primary constraint
2)  Concurrency (1000x today)
3)  Memory bandwidth and capacity are not keeping pace
4)  Processor architecture is open, but likely heterogeneous
5)  Programming model heroic compilers will not hide this
6)  Algorithms need to minimize data movement, not flops
7)  I/O bandwidth unlikely to keep pace with machine speed
8)  Resiliency critical at large scale (in time or processors)
9)  Bisection bandwidth limited by cost and energy
 Unlike the last 20 years most of these (1-7) are equally
important across scales, e.g., 1000 1-PF machines

Performance Growth

Algorithms to Optimize for
Communication

16 16

Avoiding Communication in
Iterative Solvers

•  Consider Sparse Iterative Methods for Ax=b
–  Krylov Subspace Methods: GMRES, CG,…
–  Can we lower the communication costs?

•  Latency of communication, i.e., reduce # messages by
computing multiple reductions at once

•  Bandwidth to memory hierarchy, i.e., compute Ax, A2x, …
Akx with one read of A

•  Solve time dominated by:
– Sparse matrix-vector multiple (SPMV)

•  Which even on one processor is dominated by
“communication” time to read the matrix

– Global collectives (reductions)
•  Global latency-limited Joint work with Jim

Demmel, Mark Hoemman,
Marghoob Mohiyuddin

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

single-precision peak

double-precision peak

single-precision peak

double-precision peak

RTM/wave eqn.

RTM/wave eqn.

7pt Stencil
27pt Stencil

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

DP add-only

DP add-only

SpMV
SpMV

7pt Stencil

27pt Stencil
DGEMM

DGEMM

GTC/chargei

GTC/pushi

GTC/chargei

GTC/pushi

Autotuning Gets Kernel
Performance Near Optimal

• Roofline model captures bandwidth and computation limits
• Autotuning gets kernels near the roof

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,…

1 2 3 4 … … 32
x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

•  Idea: pick up part of A and x that fit in fast memory,

compute each of k products
•  Example: A tridiagonal, n=32, k=3
•  Works for any “well-partitioned” A

1 2 3 4 … … 32
x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Sequential Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Saves bandwidth (one read of A&x for k steps)
•  Saves latency (number of independent read events)

Step 1 Step 2 Step 3 Step 4

1 2 3 4 … … 32
x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Parallel Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Each processor communicates once with neighbors

Proc 1 Proc 2 Proc 3 Proc 4

1 2 3 4 … … 32
x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A2x, …, Akx]

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Parallel Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Each processor works on (overlapping) trapezoid
•  Saves latency (# of messages); Not bandwidth
 But adds redundant computation

Proc 1 Proc 2 Proc 3 Proc 4

Matrix Powers Kernel on a
General Matrix

•  Saves communication for “well partitioned” matrices
•  Serial: O(1) moves of data moves vs. O(k)
•  Parallel: O(log p) messages vs. O(k log p)

23

Joint work with Jim Demmel, Mark
Hoemman, Marghoob Mohiyuddin

For implicit memory
management (caches)
uses a TSP algorithm
for layout

Bigger Kernel (Akx) Runs at Faster
Speed than Simpler (Ax)

Speedups on Intel Clovertown (8 core)

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

Minimizing Communication of GMRES to solve Ax=b

•  GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2

Standard	
 GMRES	

	
 	
 for	
 i=1	
 to	
 k	

	
 	
 	
 	
 	
 w	
 =	
 A	
 ·∙	
 v(i-­‐1)	
 	
 	
 …	
 SpMV	

	
 	
 	
 	
 	
 MGS(w,	
 v(0),…,v(i-­‐1))	

	
 	
 	
 	
 	
 update	
 v(i),	
 H	

	
 	
 endfor	

	
 	
 solve	
 LSQ	
 problem	
 with	
 H	

	

Communica1on-­‐avoiding	
 GMRES	

	
 	
 	
 W	
 =	
 [
 v,	
 Av,	
 A2v,	
 …	
 ,	
 Akv	
]	

	
 	
 	
 [Q,R]	
 =	
 TSQR(W)	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 …	
 	
 “Tall	
 Skinny	
 QR”	

	
 	
 	
 build	
 H	
 from	
 R	
 	

	
 	
 	
 solve	
 LSQ	
 problem	
 with	
 H	

	

	

	

	

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

• Oops	
 –	
 W	
 from	
 power	
 method,	
 precision	
 lost!	

TSQR: An Architecture-Dependent
Algorithm

W	
 =	
 	

W0	

W1	

W2	

W3	

R00	

R10	

R20	

R30	

R01	

R11	

R02	

Parallel:	

W	
 =	
 	

W0	

W1	

W2	

W3	

R01	
 R02	

R00	

R03	

Sequen1al:	

W	
 =	
 	

W0	

W1	

W2	

W3	

R00	

R01	

R01	

R11	

R02	

R11	

R03	

Dual	
 Core:	

Can	
 choose	
 reduc1on	
 tree	
 dynamically	

Mul1core	
 /	
 Mul1socket	
 /	
 Mul1rack	
 /	
 Mul1site	
 /	
 Out-­‐of-­‐core:	
 	
 ?	

Work by Laura Grigori,
Jim Demmel, Mark
Hoemmen, Julien Langou	

TSQR Performance Results
•  Parallel

–  Intel Clovertown
– Up to 8x speedup (8 core, dual socket, 10M x 10)

–  Pentium III cluster, Dolphin Interconnect, MPICH
•  Up to 6.7x speedup (16 procs, 100K x 200)

–  BlueGene/L
•  Up to 4x speedup (32 procs, 1M x 50)

–  Grid – 4x on 4 cities (Dongarra et al)
–  Cloud – early result – up and running using Mesos

•  Sequential
–  Out-of-Core on PowerPC laptop

•  As little as 2x slowdown vs (predicted) infinite DRAM
•  LAPACK with virtual memory never finished

27

Data from Grey Ballard, Mark Hoemmen, Laura Grigori, Julien Langou, Jack
Dongarra, Michael Anderson

Matrix Powers Kernel (and TSQR)
in GMRES

28

0 200 400 600 800 1000

Iteration count

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
no

rm
of

re
si

du
al

A
x
−

b
Original GMRES

0 200 400 600 800 1000

Iteration count

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
no

rm
of

re
si

du
al

A
x
−

b
Original GMRES
CA-GMRES (Monomial basis)

0 200 400 600 800 1000

Iteration count

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
no

rm
of

re
si

du
al

A
x
−

b
Original GMRES
CA-GMRES (Monomial basis)
CA-GMRES (Newton basis)

Communication-Avoiding
Krylov Method (GMRES)

Performance on 8 core Clovertown

CA-Krylov Methods Summary and
Future Work

•  The Communication-Avoidance works
– Provably optimal
– Faster in practice

•  Ongoing work for “hard” matrices
– Partition poorly (high surface to volume)
–  Idea: separate out dense rows (HSS

matrices)
–  [Erin Carson, Nick Knight, Jim Demmel]

30

Beyond Domain Decomposition:
2.5D Matrix Multiply

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
e
rc

e
n
ta

g
e
 o

f
m

a
ch

in
e
 p

e
a
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D Broadcast-MM
2.5D Cannon-MM
2D MM (Cannon)

ScaLAPACK PDGEMM Perfect
Strong Scaling

•  Conventional “2D algorithms” use P1/2 x P1/2 mesh and minimal memory
•  New “2.5D algorithms” use (P/c)1/2 x (P/c)1/2 x c1/2 mesh and c-fold memory

•  Matmul sends c1/2 times fewer words – lower bound
•  Matmul sends c3/2 times fewer messages – lower bound

Word by Edgar
Solomonik and Jim
Demmel 	

Lesson: Never
waste fast
memory

Communication Avoidance in Multigrid: Method of
Local Corrections (MLC) for Poisson’s Equation"

MLC uses domain decomposition, plus a noniterative form of
multigrid, to represent the solution in a way that minimizes global
communication and increases computational intensity."
•  Local domains fit in cache; ssolves computed using FFT and a

simplified version of FMM. For 163 - 323, this yields ~5 flops/byte."
•  The (global) coarse problem is small. Communication comparable

to single relaxation step."
•  Weak scaling: 95% efficiency up to 1024 processors."
"
"

,	

Real analytic, with
rapidly convergent
Taylor expansion

Work by Phil Colella et al

Avoiding Synchronization

33 33

34

Avoid Synchronization from
Applications

Cholesky
4 x 4

QR
4 x 4

Computations as DAGs
View parallel executions as the directed acyclic graph of the
computation

Slide source: Jack Dongarra	

Avoiding Synchronization in
Communication

•  Two-sided message passing (e.g., MPI) requires
matching a send with a receive to identify memory
address to put data
–  Wildly popular in HPC, but cumbersome in some applications
–  Couples data transfer with synchronization

•  Using global address space decouples synchronization
–  Pay for what you need!
–  Note: Global Addressing ≠ Cache Coherent Shared memory

address

message id

data payload

data payload
one-sided put message

two-sided message

network
 interface

memory

host
CPU

Joint work with Dan Bonachea, Paul Hargrove,
Rajesh Nishtala and rest of UPC group	

Event Driven LU in UPC

•  Assignment of work is static; schedule is dynamic
•  Ordering needs to be imposed on the schedule

–  Critical path operation: Panel Factorization
•  General issue: dynamic scheduling in partitioned memory

–  Can deadlock in memory allocation
–  “memory constrained” lookahead

some edges omitted

37

 DAG Scheduling Outperforms Bulk-
Synchronous Style

UPC vs.
ScaLAPACK

0

20

40

60

80

2x 4	
 pr oc 	
 g r i d 4x 4	
 pr oc 	
 g r i d

GF
lop

s

ScaLAPACK

UPC

UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding
–  New problem in partitioned memory: allocator deadlock
–  Can run on of memory locally due tounlucky execution order

PLASMA on shared memory UPC on partitioned memory

PLASMA by Dongarra et al; UPC LU joint with
Parray Husbands	

Irregular vs. Regular Parallelism

•  Computations with known task graphs can be
mapped to resources in an offline manner (before
computation starts)
–  Regular graph: By a compiler (static) or runtime (semi-static)
–  Irregular graphs: By a DAG scheduler

–  No need for online scheduling
•  If graphs are not known ahead of time (structure,

task costs, communication costs), then dynamic
scheduling is needed
–  Task stealing / task sharing
–  Demonstrated on shared memory

•  Conclusion: If your task graph is dynamic, the
runtime needs to be, but what if it static?

Load Balancing with Locality
•  Locality is important:

–  When memory hierarchies are deep
–  When computational intensity is low

•  Most (all?) successful examples of locality-important
applications/machines use static scheduling
–  Unless they have a irregular/dynamic task graph

•  Two extremes are well-studied
–  Dynamic parallelism without locality
–  Static parallelism (with threads = processors) with locality

•  Dynamic scheduling and locality control don’t mix
–  Locality control can cause non-optimal task schedule, which can

blow up memory use (breadth vs. depth first traversal)
–  Can run out of memory locally when you don’t globally

0

2

4

6

8

10

12

14

0

100

200

300

400

500

600

700

1 2 3 6 12

M
em

or
y

pe
r n

od
e

(G
B

)

Ti
m

e
(s

ec
)

cores per MPI process

fvCAM
 (240 cores on Jaguar)

Time

Memory

Use Two Programming Models to
Match Machine

Hybrid Programming is key to saving memory
(2011) and sometimes improves performance

40

0

2

4

6

8

10

12

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 6 12

M
em

or
y

pe
r n

od
e

(G
B

)

Ti
m

e
(s

ec
)

cores per MPI process

PARATEC
 (768 cores on Jaguar)

Time

Memory

Getting the Best of Each

PGAS for locality and convenience
Global address space: directly read/write remote data
Partitioned: data is designated as local or global

G
lo

ba
l a

dd
re

ss
 s

pa
ce
"

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0" p1" pn"

•  Affinity control
•  Scalability
•  Never say “receive”

Debate is around the control model:
•  Dynamic thread creation vs. SPMD
•  Hierarchical SPMD compromise

•  “Think parallel” and group as needed

Hierarchical SPMD in Titanium
•  Thread teams may execute distinct tasks

partition(T) {
 { model_fluid(); }
 { model_muscles(); }
 { model_electrical(); }
}

•  Hierarchy for machine / tasks
–  Nearby: access shared data
–  Far away: copy data

•  Advantages:
–  Provable pointer
–  Mixed data / task style
–  Lexical scope prevents some deadlocks

42

B	

C	

D	

A	
 1	

2	

3	
 	
 4	

span	
 1	

(core	
 local)	

span	
 2	

(processor	
 local)	

span	
 3	

(node	
 local)	

span	
 4	

(global)	

Hierarchical Programming Model:
Phalanx

•  Invoke functions on set of cores and set of memories
•  Hierarchy of memories

–  Can query to get (some) aspects of the hierarchical structures
•  Functionally homogeneous cores (on Echelon)

–  Can query to get (performance) properties of cores
•  Hierarchy of thread blocks

–  May be aligned with hardware based on queries

Memory

Memory

Memory

Proc Mem Proc Mem
• • •

Proc Mem Proc Mem
• • •

Echelon ProgSys Team: Michael Garland, Alex Aiken, Brad
Chamberlain, Mary Hall, Greg Titus, Kathy Yelick

Stepping Back
•  Communication avoidance as old at tiling
•  Communication optimality as old as Hong/Kung
•  What’s new?

–  Raising the level of abstraction at which we optimize
–  BLAS2 à BLAS3 à LU or SPMV/DOT à Krylov
–  Changing numerics in non-trivial ways
–  Rethinking methods to models

•  Communication and synchronization avoidance
•  Software engineering: breaking abstraction
•  Compilers: inter-procedural optimizations

44

Exascale Views
•  “Exascale” is about continuing growth in

computing performance for science
–  Energy efficiency is key
–  Job size is irrelevant

•  Success means:
–  Influencing market: HPC, technical computing,

clouds, general purpose
–  Getting more science from data and computing

•  Failure means:
–  few big machines for a few big applications

•  Not all computing problems are exascale, but
they should all be exascale-technology aware

45

Thank You!

46

